期刊专题

10.3321/j.issn:1002-6819.2008.03.002

基于近红外光谱和机器视觉的多信息融合技术评判茶叶品质

引用
首次提出利用近红外光谱和机器视觉的多传感信息融合技术评判茶叶品质.试验以4个等级的炒青绿茶为试验对象,对获取的图像特征信息和光谱特征信息,通过主成分分析提取相应的主成分得分向量构成模式识别的输入.利用BP神经网络方法建立茶叶综合品质评判模型.在模型的建立过程中,对各个信息的主成分因子数进行了优化.从试验的结果看,在图像信息主成分因子数等于6,光谱信息主成分因子数等于3时,建立的模型最佳,模型训练时的回判率为99%,预测时的识别率为89%.研究结果表明基于近红外光谱和机器视觉技术的多传感信息融合技术评判茶叶综合品质的方法是可行的,评判结果的准确性和稳定性都较单个信息模型有所提高.

近红外光谱、机器视觉、多信息融合、茶叶、检测

24

TP391.41;O657.33(计算技术、计算机技术)

江苏省自然科学基金BK2006707-1;国家高技术研究发展计划863计划2006AA10Z263

2008-06-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

5-10

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

24

2008,24(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn