期刊专题

基于自适应模糊推理的VAV系统变静压控制方法研究

引用
变风量空调系统传统的变静压模糊控制方法依赖人为经验获取模糊规则,存在有效模糊规则覆盖率不全的问题,从而导致系统控制时间长、超调、能耗大.针对这一问题,提出了一种基于减聚类和自适应神经模糊推理系统(SC-ANFIS)的变静压模糊控制方法,该方法利用减聚类算法的学习能力对输入样本进行聚类分析,优化输入样本数据和生成模糊规则,用神经模糊推理的方法训练模糊规则以实现VAV系统变静压模糊控制.在某VAV系统实验平台上的对比实验表明:该方法对比定静压法减少了67%的送风机电耗;对比经验变静压模糊控制方法,其调节时间更短、控制过程更加稳定、抗干扰性更强,并且可以减少7%的送风机电耗.

VAV系统、模糊控制、自适应、变静压、节能

51

国家重点研发计划项目"新型建筑智能化系统平台技术";陕西省科技厅专项科研项目

2021-03-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

108-115

暂无封面信息
查看本期封面目录

暖通空调

1002-8501

11-2832/TU

51

2021,51(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn