期刊专题

基于粒子群优化最小二乘支持向量机的离心式制冷机故障诊断

引用
针对制冷系统传统故障诊断正确率低的问题,引入最小二乘支持向量机(LSSVM)算法用于制冷系统故障诊断.在LSSVM模型基础上,结合粒子群优化(PSO)得到PSO-LSSVM模型,利用特征选择方法优化得到LSSVM8模型,利用组合方法得到PSO-LSSVM8模型.分析比较了4种模型的诊断性能.结果表明:PSO-LSSVM模型、LSSVM8模型均可改善基于LSSVM模型的制冷系统故障诊断性能,尤其是对于制冷剂泄漏/充注量不足故障,准确率分别提高1.04%,1.24%;PSO-LSSVM8模型比采用单种优化方法的诊断模型具有更好的诊断性能,可克服人为选择参数的盲目性,在全局优化与收敛速度方面具有较大优势,应用于制冷系统故障诊断具有较好的可行性.

制冷系统、故障诊断、最小二乘支持向量机、粒子群算法、优化

48

国家自然科学基金项目“基于敏感特征的制冷系统故障扩散机理研究及早期预测”51506125

2018-11-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

120-126

相关文献
评论
暂无封面信息
查看本期封面目录

暖通空调

1002-8501

11-2832/TU

48

2018,48(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn