期刊专题

基于影响因素分析和小波神经网络的供热量预测

引用
基于统计方法分析了实测时间序列中各影响因素与供热量的相关性。应用小波分析有效提取序列中的局部信息,与神经网络相结合,可分析蕴藏在系统中的非线性动态特性。建立了小波神经网络预测模型,把影响供热量的因素分为与其相关性较大(系统循环流量、供水温度和回水压力)和较小(供、回水压力和回水温度)的2组数据,预测结果证实与供热量相关性较大的1组影响因素的拟合程度比相关性小的高。就预测结果的准确性与BP神经网络结构进行了比较。结果表明,基于影响因素分析和梯度修正的小波神经网络供热量预测方法具有良好的动态特性、较强的泛化能力和较高的预测精度,适用于系统供热量的短期预测。

影响因素、小波神经网络、供热量预测、时间序列、动态特性、泛化能力、预测精度

TU9;TU8

国家“十二五”科技支撑计划项目编号2012BAJ04B02

2014-03-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

113-118

暂无封面信息
查看本期封面目录

暖通空调

1002-8501

11-2832/TU

2014,(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn