期刊专题

10.3969/j.issn.1674-957X.2018.14.022

基于膜计算的水电机组故障识别

引用
本文对水电机组振动故障进行识别研究,提出了一种基于膜计算的粒子群模糊聚类方法;该方法利用粒子群算法对模糊均值聚类算法的聚类中心进行优化,并利用膜计算增加粒子群的种群多样性;最后将所给方法成功应用于水电机组振动故障识别;并与粒子群优化的FCM算法、FCM算法、K-means算法进行比较,说明所给方法的优越性.

FCM聚类、膜计算、水电机组、故障识别

2018-08-24(万方平台首次上网日期,不代表论文的发表时间)

共2页

49-50

暂无封面信息
查看本期封面目录

内燃机与配件

1674-957X

13-1397/TH

2018,(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn