期刊专题

10.3969/j.issn.1001-5167.2018.01.012

基于公交车GPS数据的短时交通流预测研究

引用
随着智慧化城市的提出,智能交通系统已经成为城市建设中至关重要的部分,而短时交通流预测是实现智能交通系统的核心研究内容之一[1].本文对获取的公交车GPS数据进行了挖掘分析,提取公交车速度数据进行短时交通流预测算法研究.考虑到时序数据的时间相关性和交通流数据的准周期特性,本文设计长短期记忆人工神经网络(Long-Short Term Memory,LSTM)对交通流速度数据进行预测.结果表明,LSTM能够通过对历史速度数据的学习,找出时间序列之间的关系,利用LSTM的选择性记忆功能,能够对短时交通流速度进行更准确的预测.

短时交通流预测、公交GPS数据、长短期记忆网络

37

U491.14(交通工程与公路运输技术管理)

2018-05-23(万方平台首次上网日期,不代表论文的发表时间)

共6页

75-80

相关文献
评论
暂无封面信息
查看本期封面目录

内蒙古工业大学学报(自然科学版)

1001-5167

15-1060/T

37

2018,37(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn