基于Pointnet和迁移学习的苹果表型参数估算研究
[目的]为快速、准确、无损检测苹果的外部表型参数,提出了一种基于Pointnet和迁移学习的苹果表型参数估算算法.[方法]通过Kinect相机从任意角度拍摄苹果并使用直通滤波法去除背景环境数据得到只包含苹果信息的点云数据.在此基础上使用最远点采样法,获取标准输入点云,然后采用椭球曲面方程构建苹果几何模型,生成基于椭圆方程的苹果几何模型库.使用Pointnet算法训练仿真模型数据,然后通过迁移学习迁移到实测数据上去,在训练好的模型上进行微调;再经过5-折交叉验证,判定模型的鲁棒性和泛化能力,得到最终的估算模型.[结果]以均方根误差(RMSE)和决定系数(R2)评价模型结果,实测250个苹果3个角度点云共750组数据,在任意一个角度拍摄的残缺率达到50%的点云数据的条件下,该模型对苹果的直径、高度、体积3组表型参数的RMSE分别为2.247、2.275和22.780,R2分别为0.919、0.841和0.927.[结论]该算法回归效果优于传统算法,在任意角度拍摄到的残缺率达到50%的点云数据的条件下仍能很好完成外部表型参数估算.
Pointnet;迁移学习;苹果;表型参数;点云
44
TP391.4(计算技术、计算机技术)
国家自然科学基金项目;中央高校基本科研业务费专项资金
2021-11-25(万方平台首次上网日期,不代表论文的发表时间)
共8页
1209-1216