10.3969/j.issn.1000-2006.201807059
基于单个特征分类准确率的特征选择方法研究
[目的]随着遥感技术迅猛发展,在影像解译过程中提取的信息越来越繁杂多样.为提高地物分类准确率,常加入更多的特征信息,而由此往往造成一定的信息冗余,导致分类效率甚至准确率降低.笔者利用随机森林(RF)和支持向量机(SVM)分类器,探索在遥感分类过程中保证分类精度的同时又能降低特征维度的方法.[方法]以吉林省安图县福兴林场部分区域为研究对象,利用2015年Landsat-8影像为数据源,提取光谱信息(红、绿、蓝、近红外和短波红外波段)、植被指数(NDVI、增强型植被指数、比值植被指数和裸土植被指数)、纹理(同质性、均值、二阶矩、方差、差异性、对比度、熵和相关性)和地形信息(坡度和坡向)共19个指标作为分类特征变量.以RF分类器估测的特征重要性进行特征选择为对照,分别以单个特征在RF和SVM两分类器中的分类准确率为依据进行特征选择,并对选取的特征进行主成分分析,与未做主成分分析的进行区分,再分别用RF和SVM分类器进行分类,评价分类精度,确定最优特征和分类器组合.[结果]①基于SVM单个特征分类准确率选取特征,对选取的特征进行主成分分析,再用RF进行分类,该方法与其他方法相比分类性能最好,当特征维度为5时,总体精度为0.86,Kappa系数为0.83;与输入全部特征进行分类相比,不仅提高了分类精度,而且降低了特征维度,使分类效率得以提升.基于RF特征重要性选取特征的RF分类取得了较高的分类准确率,但特征维数小于7时,分类准确率波动较大;在特征维数为4时分类准确率增至最大值(0.88),随后骤降为0.83,之后基本保持在此水平.而基于单个特征分类准确率选取特征,分类准确率变化较为平缓,如上所提最优分类性能方法的分类准确率波动范围基本在0.02.②基于单个特征在RF和SVM分类器中的分类准确率进行特征选择,在随后的分类过程中,SVM分类器分类精度总体高于RF.基于RF单个特征分类准确率选取特征的SVM分类,及基于SVM单个特征分类准确率选取特征并对选取特征进行主成分分析的RF分类,较仅利用SVM或RF单个分类器选取特征并分类的分类准确率更高.[结论]①基于单个特征分类准确率的特征选择方法,可在保证分类精度的同时降低特征维度,且在较低维度时,基于该方法选取特征的分类精度较基于特征重要性选取特征的分类精度更稳定.②基于单个特征分类准确率进行特征选择,不同分类器选取的特征有所差异,分类准确率也不同,利用多个分类器较单个分类器选取特征并分类的性能更好.③在中低维度时,RF分类器的分类准确率可能与特征输入顺序有关,对输入特征进行主成分分析有利于提高分类器的分类精度及稳定性.
特征选择、单个特征分类准确率、Landsat-8卫星、随机森林(RF)、支持向量机(SVM)、遥感分类
43
S757.2;TP751(森林经营学、森林计测学、森林经理学)
国家自然科学基金31570547
2019-10-24(万方平台首次上网日期,不代表论文的发表时间)
共8页
109-116