期刊专题

10.13960/j.issn.1672-2558.2023.01.005

基于改进YOLO v5的手语字母语的识别方法

引用
针对传统手势识别方法计算量大、难以实时识别的问题,研究一种基于改进YOLO v5的轻量化手语检测识别方法.首先用Mobilenet v3-Small替换YOLO v5的主干网络;然后利用Ghost Conv模块和C3Ghost模块替换YOLO v5颈部网络中的Conv和Ghost模块;最后通过YOLO v5的预测部分生成预测框.在此基础上,利用k-means算法生成适合手势的先验框,加快网络检测手势.与其他网络算法对比分析可知,改进算法在保持精度基本不变的情况下可大幅减少网络参数,提高网络的检测速度.

Mobilenet、YOLO v5、Ghost Module、轻量化、手语识别

21

TB391.41(工程材料学)

南京工程学院大学生科技创新基金项目TB202217012

2023-06-05(万方平台首次上网日期,不代表论文的发表时间)

共6页

27-32

相关文献
评论
暂无封面信息
查看本期封面目录

南京工程学院学报(自然科学版)

1672-2558

32-1671/N

21

2023,21(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn