期刊专题

10.13960/j.issn.1672-2558.2019.03.014

基于层次支持向量机和KICA的人脸识别

引用
针对人脸图像的非线性特点,将基于核方法的核独立分量分析算法用于提取人脸图像特征.为避免多类支持向量机出现不可识别域,提出基于二叉树思想的层次支持向量机算法,用于多类人脸识别.将层次支持向量机和核独立分量分析算法相结合进行人脸识别,首先对人脸图像进行预处理和主成分分析法降维;然后运用核独立分量分析算法估算出独立基影像,从而得到人脸特征;最后将人脸特征输入层次支持向量机进行分类识别.在ORL人脸库上的仿真结果表明该算法较好地兼顾了识别率和运行速率.

人脸识别、支持向量机、核独立分量分析、主分量分析

17

TP391(计算技术、计算机技术)

2019-11-18(万方平台首次上网日期,不代表论文的发表时间)

共4页

76-79

暂无封面信息
查看本期封面目录

南京工程学院学报(自然科学版)

1672-2558

32-1671/N

17

2019,17(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn