期刊专题

10.13960/j.issn.1672-2558.2018.04.11

基于时频联合特征提取的 风电机组齿轮箱齿轮磨损程度识别

引用
针对风电机组齿轮箱齿轮发生磨损故障时其声信号非平稳非线性的特点,提出一种基于小波域倒谱的时频域联合特征提取,并与支持向量机相结合的方法,对齿轮磨损程度进行识别.特征提取部分选用db3小波对原始声信号进行三层小波包分解,对每一个节点分别进行小波包重构,计算出重构信号的能量值并进行归一化;对重构信号进行倒谱变换并选取频域异常幅值对应的频率作为特征值,形成一个八维的特征向量;以波形、峰值、峭度、脉冲、裕度五个时域因子组成时频联合特征向量作为原始信号的特征输入;用支持向量机作为模式识别的工具.试验结果表明,基于时频联合特征的分析相对于单特征提取在一定程度上提高了故障识别的准确率.

风电机组齿轮箱、声信号、小波包、联合特征提取

16

TM935.2

2019-03-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

61-66

暂无封面信息
查看本期封面目录

南京工程学院学报(自然科学版)

1672-2558

32-1671/N

16

2018,16(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn