期刊专题

10.13960/j.issn.1672-2558.2017.03.011

说话人识别算法鲁棒性研究

引用
由于噪声干扰问题,说话人识别算法的效率受到很大影响.为此,在美尔倒谱系数特征提取的基础上,采用半升正弦函数对特征进行修正.采用特征规整、特征弯折和特征映射三种方法对特征进行校对.为提高说话人识别率以及模型的鲁棒性,提出混合BP神经网络与混合高斯模型的方法,将高斯混合模型的概率输出作为神经网络输入,从而获取说话人间的交互信息.试验结果显示,算法的识别率高,抗噪性好.

说话人识别、美尔频率倒谱系数、高斯混合模型、神经网络

15

TN912.3

南京工程学院创新基金面上项目CKJC201505

2017-12-14(万方平台首次上网日期,不代表论文的发表时间)

共7页

60-66

相关文献
评论
暂无封面信息
查看本期封面目录

南京工程学院学报(自然科学版)

1672-2558

32-1671/N

15

2017,15(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn