期刊专题

基于核主元分析和动态递归模糊神经网络的软测量建模

引用
针对软测量建模过程中的误差数据剔除、特征提取,及模型的动态辨识问题,提出基于核主元分析和动态递归模糊神经网络软测量建模方法.首先,利用样本间马氏距离进行样本相似程度分析,去除样本中错误数据以确保数据质量;然后利用核主元分析提取系统的非线性主元,作为动态递归模糊神经网络的输入;最后利用新样本数据训练动态递归模糊神经网络.将该方法应用于赖氨酸发酵过程的产物浓度预测,仿真结果表明该方法具有较高的预测精度,满足现场测量要求.

马氏距离、核主元分析法、动态递归模糊神经网络(DRFNN)、软测量

11

TP274(自动化技术及设备)

2013-07-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

19-24

暂无封面信息
查看本期封面目录

南京工程学院学报(自然科学版)

1672-2558

32-1671/N

11

2013,11(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn