10.13232/j.cnki.jnju.2023.04.011
基于矢量量化域相似码字替换的对抗嵌入方法
为了整合对图像的隐私保护、版权保护、完整性保护,提出一种压缩域基于相似码字替换的对抗嵌入方法.该方法属于对抗攻击和信息隐藏的交叉新领域,将传统对抗攻击方法中人为添加的无意义噪声替换成有意义的秘密信息,使对抗嵌入图像错误分类,防止攻击者在云端海量数据库中通过神经网络分类模型捕获特定类别的图像,实现对图像的隐私保护;而且,可以从对抗嵌入图像中完整提取隐藏的秘密信息,实现对图像的版权保护.该对抗嵌入方法的攻击对象是图像的压缩形式-矢量量化索引,攻击中使用该索引的不同相似码字索引替换嵌入的秘密信息,可以实现在高压缩率情况下对图像的双重保护.使用遗传算法优化相似索引扰动,可以有效地降低真实类别的概率,误导分类模型的输出.实验结果证明,在CIFAR-10测试数据集上,使用三种经典的网络分类模型(Resnet,NIN,VGG16),提出的对抗嵌入方法使90.83%的图像以85.44%的平均置信度被错误分类,且嵌入容量可以达到0.75 bpp.
对抗攻击、神经网络、矢量量化、信息安全
59
TP309.2(计算技术、计算机技术)
河南省科技攻关计划;河南省高等学校重点科研项目
2023-11-02(万方平台首次上网日期,不代表论文的发表时间)
共16页
644-659