期刊专题

10.13232/j.cnki.jnju.2023.04.009

融入领域知识的跨境民族文化生成式摘要方法

引用
从跨境民族文化文本中生成具有领域知识的摘要对进一步开展跨境民族文化文本检索、问答等任务具有重要的支撑作用,当前基于深度学习的生成式文本摘要取得了较好的效果,但直接用于跨境民族文化文本摘要任务会导致生成的摘要出现领域词汇丢失的问题.为此,提出一种融入领域知识的跨境民族文化生成式摘要方法(Domain Knowledge-Culture-Generative Summary,DKCGS),在编码端将跨境民族文化领域词典编码与原文本编码融合,以此增强模型对领域词汇的表征能力;在解码端,基于指针生成网络将具有同义或跨境关系的领域词汇分布与原文本分布结合,提高模型生成文化领域词汇的准确率.同时,在通用领域文本上进行预训练并进一步初始化参数,以缓解数据稀缺导致模型训练效果不佳的问题.实验结果表明,提出的方法在跨境民族文本摘要数据集上比基线模型的Rouge-1提升了 0.95,有效提升了跨境民族文化文本摘要生成的质量.

跨境民族文化、领域知识、指针生成网络、预训练、文本摘要

59

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;云南省重大科技专项计划;云南省重大科技专项计划;云南省自然科学基金重点项目

2023-11-02(万方平台首次上网日期,不代表论文的发表时间)

共9页

620-628

暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

59

2023,59(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn