期刊专题

10.13232/j.cnki.jnju.2023.01.006

基于互信息的Fisher Score多标记特征选择

引用
目前,Fisher Score模型在处理多标记数据时没有考虑样本和整个特征空间之间以及特征和标记之间的关系.提出一种基于互信息的Fisher Score多标记特征选择方法.首先,在多标记决策系统中考虑整个样本空间对特征选择的影响,根据异类样本与同类样本之间的欧式距离定义权重公式,并在特征空间下对标记赋予权重衡量标记的重要程度.然后,基于互信息理论定义特征与每个标记之间的互信息来计算每个特征和每个标记之间的相关度,将特征与标记之间的相关度与该标记所占的权重相结合来定义特征和标记集之间的总相关度.将Fisher得分与总相关度结合,定义每个特征的新的Fisher得分,进而构建多标记Fisher Score模型.最后,设计了一种基于互信息的Fisher Score多标记特征选择算法.在六个多标记数据集上的实验证明,提出的算法与其他算法相比,其四种评价指标都表现良好,分类性能出色.

多标记学习、特征选择、互信息、Fisher Score

59

TP181(自动化基础理论)

国家自然科学基金;国家自然科学基金;河南省科技攻关项目

2023-05-06(万方平台首次上网日期,不代表论文的发表时间)

共12页

55-66

暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

59

2023,59(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn