期刊专题

10.13232/j.cnki.jnju.2022.04.005

推荐系统中的准确性、新颖性和多样性的有效耦合与应用

引用
目前,基于人工智能推荐系统的研究工作大多集中在算法优化上,而关于推荐系统更重要的性能评价指标往往被忽视.具体地,独立的评价指标无法有效地反映算法之间的差异,需要进一步有效地耦合这些评价指标.为了反映推荐系统性能的差异,提出较合理的性能评估框架AND(Accuracy Novelty Diversity),可以同时反映推荐系统整体的准确性、新颖性和多样性.把AND框架融入主流的序列化推荐模型,命名为SASAND(Self?Attentive Sequential?AND).实验结果表明,提出的AND框架在假设数据集和基准数据集的基础上,能有效反映准确性相似的不同算法之间推荐性能的差异,同时,提出的SASAND模型基于AND框架的约束,能对推荐的结果在综合考虑准确性、新颖性和多样性的前提下重新排序.与主流的推荐模型对比,SASAND能够尽最大可能达到整体最优的推荐性能输出.

推荐系统、指标、准确性、新颖性、多样性

58

TP181(自动化基础理论)

广东省自然科学重点领域专项;国家自然科学基金

2022-09-08(万方平台首次上网日期,不代表论文的发表时间)

共11页

604-614

暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

58

2022,58(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn