期刊专题

10.13232/j.cnki.jnju.2022.02.010

基于欧式空间-加权逻辑回归迁移学习的运动想象EEG信号解码

引用
基于脑电图(Electroencephalography,EEG)信号的运动想象(Motor Imagery,MI)意图识别是脑机接口(Brain-Computer Interface,BCI)研究中的重要问题.然而,EEG信号存在严重的个体性差异,不同被试之间的EEG信号特征空间分布差异很大,不同被试之间的分类模型不能通用.针对这一问题,提出一种基于欧式空间的加权逻辑回归迁移学习方法,算法首先将不同被试的EEG数据进行欧几里得空间对齐,使各信号更加相似,减少差异性,然后计算特定被试共空间模式(Common Spatial Pattern,CSP)获得不同的特征值,并计算这些特征值的KL(Kullback-Leibler)散度,进而利用KL散度调整迁移学习的加权逻辑回归算法,得到分类模型.实验结果表明:对于BCI竞赛IV中的数据集2a,提出的方法可以极大地提升BCI的学习性能,算法分类准确率比基线算法(线性判别分析)高出15%.在数据样本增多的情况下,被试的分类准确性也得到了明显的提升,和同类算法相比,分类准确率提升4%,说明提出的算法能进一步提高BCI的学习性能,改善分类模型的通用性问题.

运动想象、脑机接口、欧式对齐、迁移学习、逻辑回归

58

TP391.41(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金

2022-07-28(万方平台首次上网日期,不代表论文的发表时间)

共11页

264-274

暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

58

2022,58(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn