期刊专题

10.13232/j.cnki.jnju.2021.05.004

胶囊神经网络在期刊文本分类中的应用

引用
通过引入BERT(Bidirectional Encoder Representation from Transformers)词向量和胶囊神经网络架构,建立期刊文本自动分类模型.选取三个不同规模的Web of Science数据集,以期刊领域的文本分类作为研究任务.在分析文本的基础上,对论文摘要进行多种深度学习算法训练.利用向量化的胶囊神经元和动态路由机制获取文本的局部-整体关系,最终实现更加精准的文本分类模型.实验结果表明,在该数据集上,基于胶囊神经网络的文本分类器的准确率、精准率、召回率和F1值等多项指标均领先于其他基线算法,同时动态路由的迭代次数需要综合考虑模型的损失与训练速度.

期刊自动分类;文本分类;深度学习;胶囊神经网络

57

TP391(计算技术、计算机技术)

福建省中青年教师教育科研项目;装备预先研究领域基金快速扶持项目第一阶段

2021-12-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

750-756

暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

57

2021,57(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn