期刊专题

10.13232/j.cnki.jnju.2021.05.003

基于深度对抗网络和局部模糊探测的目标运动去模糊

引用
目标运动场景去模糊问题是一个具有挑战性的病态逆问题,这是因为在动态场景中不同目标和背景区域可能会存在不同的模糊核.现有的基于能量优化的去模糊方法是将模糊图像分割成具有不同模糊度的多层图像,然后对不同的模糊层进行去模糊处理,然而其优化方案往往涉及迭代,耗时又烦琐.针对目标区域与背景区域可分离的模糊场景,结合传统的基于能量优化和基于深度学习方法的优点,提出一种基于深度对抗网络和局部模糊探测的目标运动场景去模糊模型,该模型由三个生成网络组成,用以建模潜在清晰图像、模糊核和模糊图像的权重变量.模型采用深度图像先验(Deep Image Prior,DIP)作为潜在清晰图像的正则化项,使用非对称跳跃连接自编码器生成潜在图像;采用全连接网络(Fully-Connected Network,FCN)生成模糊核.为了准确地获取模糊图像的分割结果,提出三条准则来指导权值变量网络结构的设计.实验结果表明,该方法同其他传统方法相比可以显著地提升重构性能,视觉效果更好.

目标运动去模糊;深度图像先验;生成网络;深度学习

57

TP391(计算技术、计算机技术)

国家自然科学基金61273251,61673220

2021-12-21(万方平台首次上网日期,不代表论文的发表时间)

共15页

735-749

暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

57

2021,57(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn