期刊专题

10.13232/j.cnki.jnju.2021.04.011

一种混合深度神经网络的赖氨酸乙酰化位点预测方法

引用
赖氨酸乙酰化(Lysine acetylation,Kace)普遍存在于人体代谢酶中,与多种代谢疾病密切相关,因此准确识别该位点对于代谢疾病治疗的研究具有重要意义.现有的Kace位点预测方法大多采用蛋白质序列层面的信息作为输入,蛋白质结构特性考虑不全面;特征提取时未关注氨基酸残基间顺序相关性,信息丢失严重,降低了预测准确度.提出一种新的Kace位点预测深度学习CL-Kace模型.CL-Kace引入蛋白质结构特性,并与蛋白质原始序列、氨基酸理化属性共同构建位点特征空间,采用卷积神经网络(Convolutional Neural Network,CNN)提取特征;引入双向长短期记忆(Bidirectional Long Short-Term Memory,BiLSTM)网络捕获残基间的顺序依赖关系,以提高网络的抽象能力,识别潜在的Kace位点.实验结果表明,CL-Kace模型优于现有的Kace位点预测器,能够有效地预测潜在的位点.

赖氨酸乙酰化;蛋白质结构特性;卷积神经网络;双向长短期记忆网络;特征学习

57

TP391(计算技术、计算机技术)

国家自然科学基金;山西省重点研发计划高新技术领域

2021-10-26(万方平台首次上网日期,不代表论文的发表时间)

共14页

627-640

暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

57

2021,57(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn