期刊专题

分数阶对流——弥散方程的数值求解

引用
对严格的时间分数阶对流--弥散方程和严格的空间分数阶对流--弥散方程分别建立了差分格式,并用所建立的两个差分格式对同一理想算例进行了求解.通过对分数阶导数取不同的参数值,得到一系列结果,分析了不同分数阶导数描述的反常扩散现象及其变化规律,并和传统的整数阶对流--弥散方程的求解结果进行了对比.当时间分数阶对流--弥散方程和空间分数阶对流--弥散方程的分数阶导数的参数分别取整数值时,时间分数阶对流--弥散方程、空间分数阶对流--弥散方程和传统整数阶对流--弥散方程的计算结果相同,表明本文提出的对时间分数阶对流--弥散方程和空间对流--弥散方程数值求解方法是可行的,且整数阶对流--弥散方程是分数阶对流--弥散方程的特殊情况.和正常扩散相比,时间分数阶对流--弥散方程中分数阶导数的参数值越小,溶质扩散得越慢,表现为拖尾分布:空间分数阶对流--弥散方程中分数阶导数的参数值越小,溶质扩散得越快,表明空间的非局域性相关性越强.

分数阶对流--弥散方程、反常扩散、时空相关性、数值求解

43

P641.2(水文地质学与工程地质学)

国家自然科学基金40672160

2008-05-12(万方平台首次上网日期,不代表论文的发表时间)

共6页

441-446

暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

43

2007,43(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn