含有非局部项抛物型方程整体解的不存在性
本文研究一类含有非线性局部顶的抛物型m-Laplacian方程的柯西初值问题{ut=div(|▽u|m-2▽u)+∫RNK(x,y)up(y,t)dy x ∈RN,t》0/u(x,0)=u0(x),x∈RN,u(x,t)≥0(x,t)∈RN×R+ (0.1)的非负整体解的不存在性问题.从两个角度出发,研究参数p,β,m和初始条件u0(x)在无穷远处的渐近行为对问题(0.1)解的不存在性的影响.采用的方法是"试验函数法".该方法是由Mitidieri和Pohozaev在研究一类椭圆型不等式时首先提出.为了使该方法能够用于问题(0.1),需要作些修正.主要结果的证明是通过对解的先验估计,然后应用反证法提出.通过选择适当的试验函数以及变量伸缩,得到解的一个渐近估计和一个上界估计.这些估计依赖于参数T和ρ.最后让ρ→∞和对上界极小化,得出问题(0.1)的非负解的不存在性.作如下假设:(H1)存在 a0∈(0,1/2),使得当α∈(-α0,0),成立u0(x)≥0,u0 ∈L1+a loc(RN); (H2)存在K0》0,0《β《N使得K(x,y)=K(y,x)≥K0|x-y|β-N,x,y∈RN;(H3)存在K0》0,γ≥0 使得 K(x)≥K0(1+|x|2)-γ,x∈RN.主要结果是:定理1 假设2≤m《N,p》m-1和条件(H1),(H2)成立.进一步,如果下列条件之一满足:(H4)P《m-2+N+m/N-β;(H5)存在依赖参数m,p,β的β0》0,使得lim inf|x|→∞(u0(x)|x|m+β/p+1-m-α)≥β0;那么初值问题(0.1)不存在整体的非负解.当K(x,y)只是一个变量y的函数时,有定理2 假设2≤m《N,p》m-1和条件(H1),(H3)成立.进一步,如果下列条件之一满足:(H6)0≤γ《(N+m)/2;(H7)存在依赖参数的m,p,γ的β2》0,使得lim inf|x|→∞(u0(x)|x|m+N-2γ/P+1-m-a)≥β2;那么问题{ut=div(|▽u|m-2▽u)+∫RN K(y)up(y,t)dy x∈RN,t》0/u(x,0)=u0(x),x∈RN不存在整体有界的非负解.
抛物型的m-拉普拉斯方程、非局部顶、整体解、不存在性
43
O175.25(数学分析)
2008-05-12(万方平台首次上网日期,不代表论文的发表时间)
共8页
411-418