期刊专题

10.3321/j.issn:0469-5097.2006.04.006

关于支持向量机DirectSVM算法的探讨

引用
DirectSVM算法是求解支持向量机的一种简单快速迭代算法,具有最好的几何直观性.算法将线性可分的两类样本中距离最近的两个异类样本点作为支持向量,以该两点连线的垂直平分面作为初始分类超平面,然后根据分类情况逐步确定新的支持向量,即逐步优化出最优分类超平面.对该算法进行了测试,发现该算法具有局限性,并对算法局限性产生的根源进行了分析,对如何合理使用DirectSVM算法进行了讨论.结论是:用DirectSVM算法直接求解最优分类面是不可靠的,但可以作为支持向量机的一种近似算法,也可以作为求解候选支持向量集的方法,再与其他经典算法结合使用.

支持向量机、直接支持向量机、最优分类面

42

TP18(自动化基础理论)

国家自然科学基金60275041

2008-05-12(万方平台首次上网日期,不代表论文的发表时间)

共5页

368-372

暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

42

2006,42(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn