10.3321/j.issn:0469-5097.2004.03.003
多孔介质溶质运移的分数弥散过程与L(e)vy分布
在弥散核函数为负幂率函数的前提条件下,对传统的二阶对流-弥散方程进行非局域处理,推导出了分数阶对流-弥散方程,方程中的弥散项是分数阶微分.该方程柯西问题的格林函数解为一Levy分布密度函数,由此得到了一个包含3个参数的描述多孔介质中溶质运移行为的解.将所得到的Levy分布解用于模拟某一弥散试验中一空间点的溶质浓度的时间变化过程,模拟结果与实测结果吻合良好,很好地解释了实测结果的偏态和拖尾现象.而传统的二阶对流-弥散方程的高斯分布解却没有这些特征,不能解释偏态和拖尾现象.所得结果表明分数阶对流-弥散方程比传统的二阶对流-弥散方程能更好地描述多孔介质中的溶质运移行为.
多孔介质、弥散、分数阶微积分、Levy分布、高斯分布
40
P641(水文地质学与工程地质学)
国家自然科学基金40272106;博士点基金20030284027;教育部优秀青年教师奖励基金
2008-05-12(万方平台首次上网日期,不代表论文的发表时间)
共5页
287-291