期刊专题

10.3969/j.issn.1672-612X.2017.02.003

基于惩罚方法的贝叶斯群组变量选择

引用
本文针对既选择组水平变量又选择组内单个变量这两种情况下的变量选择惩罚方法,从贝叶斯的角度进行分析,指出其能被表示为一个最大后验估计.之后,给出贝叶斯框架下的两种群组变量选择惩罚方法的层次模型表达形式,并给出参数估计适于Gibbs抽样的满条件分布.最后,通过模拟比较得出结论:分别用BGL、BSGL模型进行组变量选择和双层变量选择是可行的,但得到的模型在验证集上的预测误差较大.

群组变量选择、惩罚函数、贝叶斯Group lasso、贝叶斯稀疏Group lasso、Gibbs抽样

36

O213(概率论与数理统计)

2017-05-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

6-13

相关文献
评论
暂无封面信息
查看本期封面目录

绵阳师范学院学报

1672-612X

51-1670/G

36

2017,36(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn