期刊专题

10.3969/j.issn.1672-612X.2012.02.005

CC-子群与有限群结构

引用
该文主要利用CC-子群的存在性来刻画有限群。首先,从CC-子群的存在性推导了一部分已知阶群的结构;其次,推导了当次正规子群和正规子群为CC-子群时的有限群的简单结构,得到了以下主要结论:定理1(1)若|G|=pq,p,q为素数,若G无CC-子群,则G为交换群。(2)若|G|=p2qn,p,q为奇素数,若G的CC-子群个数为1,则G为q幂零群.定理2设G为有限可解群,若G的每个次正规子群均为CC-子群,则|G|=pq。定理3设G为有限可解群,若G的每个正规子群为CC-子群,那么|G|=pqn,G=〈a〉G',其中,〈a〉为p阶子群。

有限群、Hall子群、CC-子群

31

O152.1(代数、数论、组合理论)

国家自然科学基金资助项目10771172

2012-06-17(万方平台首次上网日期,不代表论文的发表时间)

共3页

11-12,15

相关文献
评论
暂无封面信息
查看本期封面目录

绵阳师范学院学报

1672-612X

51-1670/G

31

2012,31(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn