期刊专题

10.3969/j.issn.1672-612X.2012.02.004

围长较大的平面图的全染色的一个结果

引用
图G的一个k全染色是用k种颜色对图G的顶点集和边集进行染色使得相邻接的或相关联的元素染不同的颜色,图G的全色数χ"(G)为图G的k-全染色中的最小k值.Behzad和Vizing猜想任意简单图G的全色数都不超过Δ(G)+2,已经证明了此猜想对最大度不是6的平面图成立,而且最大度不小于9的平面图G的全色数为Δ(G)+1.本文利用差值转移方法研究了最大度小于9的一些情况,证明了最大度为4,5,6,7,8的平面图G,如果其围长不小于8,则其全色数也为Δ(G)+1.

全染色、平面图、全色数

31

O157.5(代数、数论、组合理论)

中央高校基本科研业务费专项基金2010LKSX06;四川文理学院2011年院级科研项目2011Z008y

2012-06-17(万方平台首次上网日期,不代表论文的发表时间)

共3页

8-10

相关文献
评论
暂无封面信息
查看本期封面目录

绵阳师范学院学报

1672-612X

51-1670/G

31

2012,31(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn