10.13225/j.cnki.jccs.2020.1045
易自燃煤氧化的力学特性
为了研究易自燃煤体氧化后的力学特性变化,通过程序升温和热重实验获得煤氧化过程中的特征温度,并对煤样进行氧化处理;通过测试煤氧化前后的波速,得出氧化后煤体的损伤因子;通过单轴压缩实验,分析不同氧化煤的力学参数变化规律;通过建立氧化煤受力模型,分析不同氧化煤力学特性的差异并对典型工况研究.研究表明:①原煤和70,135,200和265℃氧化后煤样的平均纵波波速分别为1642,1416,1261,870和557 m/s,不同氧化煤的损伤因子平均值依次为0.19,0.43,0.72和0.86,随着氧化程度加深,波速降低,损伤因子变大;②原煤应力-应变曲线表现出较好的线性特征,其压密阶段和屈服阶段不明显;随着氧化程度加深,氧化煤应力-应变曲线压密阶段和屈服阶段越明显,多峰效应越显著,峰后台阶跌落效应越突出,且峰后存在明显残余强度,其塑性增强;③随着氧化加深,抗压强度从16.36 MPa降至4.10 MPa,弹性模量从3.779降至0.437,割线模量从2.05降至0.19,初始模量从0.609降至0.082,泊松比从0.37降至0.25;氧化对煤体的抗压强度影响最明显,其软化系数从0.89降低至0.25,并提出了"氧化煤动态工程强度"的概念;④随着氧化程度的增加,煤样的峰值应变和压密阶段最大轴应变逐渐增加,压缩阶段最大轴应变与峰值应变比值越来越大,当氧化程度达到265℃后,其比值近50%;⑤随着氧化程度的加深,煤样的破坏形式趋复杂化,破坏后的完整性变差,破坏后脱落的碎煤及煤粉增多,并伴随产生"起皮"现象;⑥氧化煤体由外向内划分为强氧化区、弱氧化区和未氧化区,并建立了氧化煤体受力模型,计算得出70,135,200和265℃氧化后的煤样未氧化区域直径为44.44,37.24,16.84和0.06 mm,分析了氧化煤体力学性质差异机制,并对典型工况进行了数值模拟分析.
易自燃煤;纵波波速;单轴压缩;力学特性;破坏特征
46
TD313(矿山压力与支护)
国家自然科学基金资助项目51674103,51304070,51574111
2021-11-09(万方平台首次上网日期,不代表论文的发表时间)
共16页
2949-2964