期刊专题

10.13225/j.cnki.jccs.2015.0202

基于Curvelet变换的地震资料弱信号识别及去噪方法

引用
针对地震资料中背景噪声较强,有效弱信号淹没其中难以识别,且在时间域地震有效信号和随机噪声又较难分离的问题,尝试将其通过Curvelet变换进行信噪分离.在Curvelet的不同尺度域采用自适应阈值函数对噪声进行压制,保留有效信号系数;同时,阈值函数中引入不同尺度域地震剖面信噪比,通过与信噪比相关的权值系数降低具有高信噪比的尺度域阈值,从而保留被随机噪声淹没的弱信号;最后对残留噪声系数再应用中值滤波,进一步压制噪声,突出弱信号.与常用于弱信号识别处理的小波变换,以及Curvelet变换的固定阈值处理方法相比,具有多尺度多方向性的Curvelet变换能够更加有效的刻画地震信号,结合自适应的阈值处理时,在弱信号识别及去噪方面具有明显优势.

Curvelet变换、自适应阈值、随机噪声、弱信号

41

P631.4

国家科技重大专项资助项目2011ZX05040-002;科技部科研院所技术开发研究专项资金资助项目2013EG122200

2016-06-30(万方平台首次上网日期,不代表论文的发表时间)

332-337

暂无封面信息
查看本期封面目录

煤炭学报

0253-9993

11-2190/TD

41

2016,41(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn