期刊专题

10.7606/j.issn.1009-1041.2022.11.13

基于多源遥感数据和机器学习算法的冬小麦产量预测研究

引用
为探讨基于多源遥感数据和机器学习算法预测冬小麦产量的可行性,利用中麦175/轮选987重组自交系F7代群体中70个家系开展田间试验,通过无人机遥感平台和地面表型车平台及手持式冠层鉴定平台,获取冬小麦灌浆期光谱数据,分别用4种机器学习方法和集成方法建立产量预测模型.结果表明,在61个光谱指数中,除MCARI、DSI、PVI外,其余指数均与产量显著相关或极显著相关,700 nm和800 nm组合的高光谱指数能够比较准确地预测产量.相对于高光谱和多光谱,RGB传感器预测产量精度最高,平均决定系数(r2)为0.74,平均均方根误差(RMSE)为517.78 kg·hm-2.相对于决策树(DT)、随机森林(RF)、支持向量机(SVM)三种传统机器学习算法,岭回归(RR)算法预测产量的精度最高,平均-2为0.73,平均RMSE为516.1 kg·hm-2.与单一的传统机器学习算法相比,DT、RF、SVM、RR结合集成算法的预测精度高且稳定,r2高达0.77,RMSE也较低.SVM、RF、DT、RR四种机器学习算法和RGB、ASD、UAV、UGV四个传感器构成的算法-传感器集成方法的预测精度提升,r2为0.79,RMSE降至469.98 kg·hm-2.因此,利用Stac-king集成方法将不同算法、传感器进行结合,能够有效地提高冬小麦产量预测精度.

遥感、冬小麦、产量预测、机器学习、集成学习

42

S512.1;S314(禾谷类作物)

国家重点研发计划;中国农业科学院基本科研业务费专项

2023-02-20(万方平台首次上网日期,不代表论文的发表时间)

共10页

1419-1428

暂无封面信息
查看本期封面目录

麦类作物学报

1009-1041

61-1359/S

42

2022,42(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn