期刊专题

10.13272/j.issn.1671-251x.2020110043

基于深度残差网络的采煤机摇臂齿轮故障诊断

引用
针对传统的采煤机摇臂齿轮故障诊断方法不能自主提取特征,导致齿轮故障诊断精度和效率不佳等问题,构建了基于深度残差网络(ResNet)的采煤机摇臂齿轮故障诊断模型.通过预激活残差单元模块降低模型的复杂度,使模型收敛速度更快;通过对振动信号进行数据重组,优化数据输入方式,提高模型对采煤机摇臂齿轮故障的识别能力.在采煤机摇臂加载实验台上进行模型验证实验,采集摇臂直齿轮正常、磨损、断裂、点蚀和裂纹5种状态下的振动信号,得出其特征具有明显差异;对测试集的混淆矩阵进行可视化分析,验证了ResNet模型能够很好地实现采煤机摇臂齿轮故障分类;与DNN模型和LeNet-5模型对比结果表明,ResNet模型具有更高的故障诊断精度和效率,综合识别率和F-score分别达到99.19%和99.05%;采用t-SNE技术对ResNet模型的最大池化层、预激活残差单元模块和全连接层输出的高维特征进行降维和可视化,验证了ResNet模型具有较强的特征提取能力.

采煤机摇臂、齿轮、故障诊断、深度残差网络、深度学习

47

TD632.2(矿山电工)

国家自然科学基金专项项目;山西省重点研发项目;山西省科技基础条件平台项目

2021-04-12(万方平台首次上网日期,不代表论文的发表时间)

共8页

71-78

暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

47

2021,47(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn