期刊专题

10.13272/j.issn.1671-251x.2020040058

一种煤矸石优化识别方法

引用
针对输送带磨损造成煤矸石图像目标检测不准确、影响煤矸石识别准确率等问题,提出了一种煤矸石优化识别方法.采集的图像经过裁切、去噪、灰度化等预处理后,利用训练好的CornerNet-Squeeze深度学习模型判断图像中是否存在待检测的煤或矸石,若存在则定位煤或矸石在图像中的位置,有效降低目标检测时输送带背景干扰;对定位区域进行灰度直方图分析,依据图像灰度直方图的三阶矩特征参数对煤矸石进行分类,判定是煤还是矸石,提高识别准确率.实验结果表明,该方法识别准确率为91.3%,单张图像识别时间为41 ms,具有较高的识别准确率和较好的实时性.

煤矸石分选、煤矸石识别、图像识别、深度学习、三阶矩

46

TD712.7(矿山安全与劳动保护)

天地科技股份有限公司科技创新创业资金专项项目2018-TD-MS031

2020-08-06(万方平台首次上网日期,不代表论文的发表时间)

共4页

113-116

暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

46

2020,46(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn