期刊专题

10.13272/j.issn.1671-251x.2017.11.009

基于数据驱动的矿井主排水设备寿命预测方法

引用
以矿井排水系统的离心泵为研究对象,介绍了包括机器学习方法、多元统计分析方法、特征量提取方法和信息融合方法在内的4种基于数据驱动的矿井主排水设备寿命预测方法的基本原理、相关案例、优缺点、尚未解决的问题及其在离心泵寿命预测中的应用;指出了离心泵寿命预测的发展趋势:寿命衰退指标应多样化,只有离心泵的各类指标正常,才能表明离心泵运行正常,多变量综合考虑使预测可靠性更高;决策层信息应高度融合,振动信号、动态摩擦力矩、扬程等因素都会随着寿命的衰退发生一定的变化,将这些信息融合用于寿命预测,效果会更好;融合特征层信息,将多种预测模型进行融合,或者建立一个集更多优点于一体的混合模型,才能更好地满足工业要求.

离心泵、寿命预测、数据驱动、机器学习、多元统计分析、特征量提取、信息融合

43

TD636(矿山电工)

山西省科技重大专项项目20131101029

2017-12-07(万方平台首次上网日期,不代表论文的发表时间)

共10页

39-48

暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

43

2017,43(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn