基于改进的PSO算法的球磨机PID神经网络控制系统
球磨机制粉系统是一个复杂的多变量系统,具有强耦合、非线性、大迟延、慢时变等特点,很难建立精确的数学模型,采用常规的控制策略难以获得满意的控制效果.针对上述问题,在对球磨机制粉系统动态特性进行分析的基础上,提出了一种不依赖于被控对象数学模型的多变量PID神经网络解耦控制策略;为进一步提高控制器性能,利用一种改进的PSO算法对PID神经网络的权值初值进行离线优化训练,然后采用BP算法对权值进行在线调整,避免网络陷入局部极小值,保证了系统不会出现大的超调和震荡.仿真结果表明,该策略可以保证球磨机控制系统有大范围的鲁棒性和适应性,能较好地解决球磨机制粉系统的耦合性、时变性等问题,具有优良的解耦机制和控制品质.
球磨机、制粉系统、PID神经网络、多变量系统、解耦、改进粒子群优化算法
37
TD453(矿山机械)
国家自然科学基金60905054
2011-08-10(万方平台首次上网日期,不代表论文的发表时间)
59-62