期刊专题

10.3969/j.issn.1002-106X.2012.02.013

用于FCC汽油辛烷值预测的非线性数学模型

引用
依据汽油正构烷烃、异构烷烃、烯烃、环烷烃和芳烃( PIONA)的烃组成数据,将催化裂化(FCC)汽油单体烃组成分为37组,利用BP神经网络算法和支持向量机回归(SVR)分别建立了FCC汽油研究法辛烷值对37个变量的非线性数学模型.由MATLAB软件编写程序,利用Levenberg-Marquardt优化算法训练BP神经网络.支持向量机回归模型采用粒子群算法优化支持向量机参数及核函数参数,并采取交叉验证方法防止机器学习的欠学习和过拟合问题.计算结果表明:两种模型都能够较好地反映汽油单体烃组成与辛烷值之间的非线性关系;BP神经网络模型对辛烷值的预测性能好于支持向量机回归模型;增加样本数量,两种方法的预测准确性皆变好;针对40个样本的学习结果,两种模型预测的相对误差绝对值的平均值分别为0.148 7和0.1674.

FCC汽油、研究法辛烷值、BP神经网络、支持向量机、粒子群算法

42

O61;TP3

中国石油大学华东研究生创新基金

2012-06-27(万方平台首次上网日期,不代表论文的发表时间)

共5页

60-64

暂无封面信息
查看本期封面目录

炼油技术与工程

1002-106X

41-1139/TE

42

2012,42(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn