10.3969/j.issn.1002-106X.2012.02.013
用于FCC汽油辛烷值预测的非线性数学模型
依据汽油正构烷烃、异构烷烃、烯烃、环烷烃和芳烃( PIONA)的烃组成数据,将催化裂化(FCC)汽油单体烃组成分为37组,利用BP神经网络算法和支持向量机回归(SVR)分别建立了FCC汽油研究法辛烷值对37个变量的非线性数学模型.由MATLAB软件编写程序,利用Levenberg-Marquardt优化算法训练BP神经网络.支持向量机回归模型采用粒子群算法优化支持向量机参数及核函数参数,并采取交叉验证方法防止机器学习的欠学习和过拟合问题.计算结果表明:两种模型都能够较好地反映汽油单体烃组成与辛烷值之间的非线性关系;BP神经网络模型对辛烷值的预测性能好于支持向量机回归模型;增加样本数量,两种方法的预测准确性皆变好;针对40个样本的学习结果,两种模型预测的相对误差绝对值的平均值分别为0.148 7和0.1674.
FCC汽油、研究法辛烷值、BP神经网络、支持向量机、粒子群算法
42
O61;TP3
中国石油大学华东研究生创新基金
2012-06-27(万方平台首次上网日期,不代表论文的发表时间)
共5页
60-64