期刊专题

10.13360/j.issn.2096-1359.2019.03.017

基于Faster R-CNN的实木板材缺陷检测识别系统

引用
我国木材资源有限,为了提高木材的利用率,采用机器视觉来实现木材缺陷快速而稳定的检测,不仅可以克服人工检测的低效率和木材缺陷识别的低准确率,而且对提高木材加工企业的智能化水平具有重要意义.为了高效、快速、准确地进行无损检测,采用深度学习方法,建立了一种基于快速深度神经网络的实木板材缺陷识别模型.首先采用Resnet V2结构对采集到的实木板材缺陷图像进行特征提取,然后应用该模型对节子、孔洞等实木板材缺陷进行训练学习,最后构建了Faster R-CNN检测框架,并使用tensorflow开发平台对节子、孔洞等实木板材缺陷进行预测输出.具体选取了2 000块杉木样本,通过旋转对原始的实木板材图像进行数据扩充,扩充后图像的80%作为训练集,20%作为验证集来进行仿真.仿真结果表明,该模型对实木板材节子缺陷检测正确率为98%,对实木板材孔洞缺陷检测正确率为95%,验证了将深度学习算法应用于实木板材缺陷检测中的有效性.

实木板材、板材缺陷识别、深度学习、Faster R-CNN、无损检测

4

TP391(计算技术、计算机技术)

国家林业局“948”项目2014-4-48;江苏省政策引导类计划国际科技合作项目BZ2016028

2019-08-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

112-117

暂无封面信息
查看本期封面目录

林业工程学报

1000-8101

32-1862/S

4

2019,4(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn