期刊专题

10.13360/j.issn.2096-1359.2018.05.019

基于CNN的无人机遥感影像质量评价

引用
运用无人机的遥感影像来调查林地状态是一种有效的途径,为了进一步提升遥感图像质量的评价精度,笔者提出了一种基于卷积神经网络(convolutional neural network,CNN)的无人机遥感图像质量评价方法,主要包括图像采集与预处理、数据扩增、模型训练和测试4个阶段.首先对无人机采集到的遥感图像进行主观质量打分,分别获取同一区域不同阶段图像的质量分数;然后运用图像旋转和剪裁等方法对遥感图像进行数据扩增,将扩增后的图片和原始图片融合作为实验数据集;其次在Caffe深度学习框架中构建基于CNN深层特征的回归模型,并训练;最后,根据已建立好的深度回归模型和学习到的参数,预测无人机遥感图像的质量分数.结果表明,提出的方法可以取得较准确的评分效果,在保证客观打分的同时,能基本保持和人眼视觉的感受一致.

卷积神经网络、遥感图像、质量评价、无人机影像、深度学习

3

TP751.1(遥感技术)

国家林业局财政项目2016-2-11;2017林地变更?全国林地数据库更新、系统工具升级维护2017-2-19

2018-10-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

121-127

暂无封面信息
查看本期封面目录

林业工程学报

1000-8101

32-1862/S

3

2018,3(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn