期刊专题

10.6052/0459-1879-17-024

半无限板边缘裂纹的权函数解法与评价

引用
权函数法是求解裂纹体在任意受载条件下的应力强度因子和裂纹面位移等断裂力学参量的高效、高精度方法,与有限元等数值方法相比,在求解效率和可靠性方面均具有明显优势.针对半无限板边缘裂纹,系统分析了在国际断裂力学界较有代表性的Wu-Carlsson、Glinka-Shen和Fett-Munz三种解析形式的权函数法,进而以在远端均匀加载下的半无限板边缘裂纹面位移Wigglesworth解析解导得的权函数及其对应的格林函数解(即裂纹面受一对单位集中力作用下的应力强度因子)为基准,沿整个裂纹长度对3种权函数的精度逐点进行比较,并与文献中基于其他方法求得的权函数做了广泛对比,包括Bueckner,Hartranft-Sih以及Wigglesworth利用不同解析方法推导出的高精度的权函数.研究了3种参考载荷(均布/正反向线性分布应力、集中力)及其不同组合,以及裂纹嘴位移的几何条件对权函数精度的影响.结果表明,基于一种参考载荷下的裂纹面张开位移比基于两种参考载荷下的应力强度因子所得到的权函数具有更高的精度,而且后一种方法的精度明显受到所选参考载荷组合的影响;裂纹面位移在裂纹嘴处三阶导数等于零的条件对基于一个参考解的权函数精度的改进效果较小.最后给出了利用各种权函数方法计算得到的4种载荷条件下的应力强度因子,并对结果进行了比较.

半无限板、边缘裂纹、权函数法、格林函数、应力强度因子

49

V215(基础理论及试验)

国家自然科学基金资助项目11402249

2017-08-07(万方平台首次上网日期,不代表论文的发表时间)

共10页

848-857

相关文献
评论
暂无封面信息
查看本期封面目录

力学学报

0459-1879

11-2062/O3

49

2017,49(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn