基于能量等效原理的应变局部化分析:Ⅰ.一维解析解
基于热力学第一定律和非局部塑性理论,提出了一种求解应变局部化问题的非局部方法.对材料的每一点定义了局部和非局部两种状态空间,局部状态空间的内变量通过非局部权函数映射到非局部空间,成为非局部内变量.在应变软化过程中,局部状态空间中的塑性变形服从正交流动法则,材料的软化律在非局部状态空间中被引入.通过两个状态空间的塑性应变能耗散率的等效,得到了应变软化过程中明确定义的局部化区域以及其中的塑性应变分布.应用本方法导出了一维应变局部化问题的解析解.解析解表明,应变局部化区域的尺寸只与材料内尺度有关;对于高斯型非局部权函数,局部化区域的尺寸大约是材料内尺度的6倍.一维算例表明,局部化区域的塑性应变分布以及载荷-位移曲线仅与材料参数和结构几何尺寸有关,变形局部化区域的尺寸随着材料内尺度的减小而减小,同时塑性应变也随着材料内尺度的减小变得更加集中.当内尺度趋近于零时,应用本文方法得到的解与采用传统的局部塑性理论得到的解相同.
应变局部化、非局部塑性、内尺度、网格相关性、有限元
49
O344.3;TU501(固体力学)
教育部留学回国人员科研启动基金201250300;西南交通大学土木工程学院基础研究创新计划基金
2017-07-06(万方平台首次上网日期,不代表论文的发表时间)
共10页
667-676