期刊专题

10.6052/0459-1879-16-383

无网格局部强弱法求解不规则域问题

引用
无网格局部彼得洛夫-伽辽金(meshless local Petrov-Galerkin,MLPG)法是一种具有代表性的无网格方法,在计算力学领域得到广泛应用.然而,这种方法在边界上需执行积分运算,通常很难处理不规则求解域问题.为了克服MLPG法的这种局限性,提出了无网格局部强弱(meshless local strong-weak,MLSW)法.MLSW法采用MLPG法离散内部求解域,采用无网格介点(meshless intervention-point,MIP)法施加自然边界条件,并采用配点法施加本质边界条件,避免执行边界积分运算,可适用于求解各类复杂的不规则域问题.从理论上讲,这种结合式方法,既保持了MLPG法稳定而精确计算的优势,同时兼备配点型方法在处理复杂结构问题时简洁而灵活的优势,实现了弱式法和强式法的优势互补.此外,MLSW法采用移动最小二乘核(moving least squares core,MLSc)近似法来构造形函数,是对传统移动最小二乘(moving least squares,MLS)近似法的一种改进.MLSc使用核基函数代替通常的基函数,有利于数值求解的精确性和稳定性,而且其导数近似计算变得更为简单.数值算例结果初步表明:这种新方法实施简单,求解稳定、精确,表现出适合工程运用的潜力.

无网格法、不规则域、边界积分、MLPG 法、MIP 法、介点原理

49

O241;O343(计算数学)

国家自然科学基金51478053;交通行业重点实验室长沙开放基金KFJ120201

2017-07-06(万方平台首次上网日期,不代表论文的发表时间)

共8页

659-666

相关文献
评论
暂无封面信息
查看本期封面目录

力学学报

0459-1879

11-2062/O3

49

2017,49(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn