10.3321/j.issn:1000-0992.2000.02.001
准晶数学弹性力学和缺陷力学
对准晶数学弹性理论的基本概念和基本框架作了介绍,在此基础上分别针对目前已经发现的几类一维准晶、二维准晶和三维准晶讨论了其数学弹性的理论体系.为了求解准晶弹性的边值问题或初值-边值问题,还必须发展相应的方法论.物理工作者在研究准晶位错弹性问题中发展了Green函数方法.针对一维与二维准晶弹性中几类问题提出了分解与叠加程序,这一程序的使用,使极其复杂的准晶弹性问题得到简化,进而引进位移函数或应力函数,把数目庞大的准晶弹性基本方程化成一个或少数几个高阶偏微分方程,进一步使求解步骤大为简化.对三维立方准晶弹性也采用了类似步骤使求解过程大为简化.在以上化简的基础上,发展了准晶弹性的边值问题或初值-边值问题的复变函数方法和Fourier分析方法,求得了一系列准晶位错问题和裂纹问题的分析解(古典解).在研究准晶弹性的边值问题古典解的同时,也讨论了同这些边值问题相对应的变分问题和广义解(弱解)以及这种弱解的数值方法--有限元法.在物理学家工作基础上开展的这些工作可以看作对经典数学弹性理论和方法、经典Volterra位错理论、普通结构材料断裂力学和经典有限元的某些发展.此外,还把一维六方准晶弹性动力学的结果与统计物理的某些方法相结合讨论了一维六方准晶的比热、热力学函数和状态方程,这些研究具有很强的探索性.
准晶、声子场、相位子场、位错、裂纹、准晶弹性动力学
30
O3(力学)
高等学校博士学科点专项科研项目
2004-01-08(万方平台首次上网日期,不代表论文的发表时间)
共12页
161-174