期刊专题

10.3969/j.issn.2095-3801.2016.02.008

基于高斯扩散模型PM2.5污染的影响因素分析

引用
针对PM2.5污染,选取蚌埠市近1年的空气质量监测数据,以空气质量指数监测指标为切入点,运用相关性分析法与多元回归法,得到PM2.5与PM10、CO、O3、NO2呈显著正相关,与SO2、O3、CO之间的相关性很低。其次,巧妙运用SUEFER、EXCLE等软件,得出9:00、12:00和21:00的PM2.5浓度分布等值图,发现在百货大楼这些市中心地区,PM2.5浓度很高,说明可能该地区汽车尾气污染较严重。最后建立经典的高斯扩散模型,运用MATLAB软件出扩散图,排除湿度影响,发现随着风力增大,PM2.5扩散与衰减也在加快。同时,改进模型,引入湿度影响因素,得到在湿度较大的情况下, PM2.5扩散只是稍微加快,说明湿度对其扩散影响较小。

PM2.5、高斯扩散、空气质量指数、SURFER、MATLAB

38

X823(环境质量分析与评价)

国家自然科学基金资助项目71471001;安徽省大学生创新创业训练项目201510378523

2016-06-16(万方平台首次上网日期,不代表论文的发表时间)

共7页

42-48

相关文献
评论
暂无封面信息
查看本期封面目录

丽水学院学报

2095-3801

33-1333/Z

38

2016,38(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn