期刊专题

10.3969/j.issn.1005-6483.2022.07.010

基于机器学习算法构建重症急性胰腺炎病人肠内营养误吸风险的预测模型

引用
目的 探讨重症急性胰腺炎病人早期肠内营养误吸发生的独立危险因素,基于机器学习算法构建误吸风险的预测模型.方法 我院2012年1月~2019年12月收治的重症急性胰腺炎并行早期肠内营养病人296例,其中未发生误吸268例,发生误吸28例.比较两组病人性别、年龄、体质量指数、急性生理与慢性健康评分(APACHE-II评分)、意识状况、营养风险、鼻饲管置入长度、中性粒细胞/淋巴细胞比值和血小板/淋巴细胞比值等数据.将误吸危险因素分别导入随机森林、神经网络、决策树、支持向量机和广义线性回归算法,建立5种预测模型并检验模型的预测效能.结果 APACHE-II评分、意识状况、营养风险、鼻饲管置入长度和血小板/淋巴细胞比值是预测早期肠内营养误吸发生的危险因素.随机森林、神经网络、决策树、支持向量机和广义线性回归算法曲线下面积分别为0.976、0.973、0.961、0.932和0.921,其中随机森林算法的预测效能最佳.结论 基于机器学习算法建立的预测模型可准确预测重症急性胰腺炎病人早期肠内营养误吸发生的风险,有利于并发症的预测评估及临床决策的制定.

重症急性胰腺炎、肠内营养、误吸风险、机器学习、危险因素

30

R459.7;R541.4;R735.2

2022-08-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

634-638

相关文献
评论
暂无封面信息
查看本期封面目录

临床外科杂志

1005-6483

42-1334/R

30

2022,30(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn