期刊专题

10.19531/j.issn1001-5299.202102005

基于深度学习的人造板表面缺陷检测研究

引用
缺陷识别是人造板检测的重要环节,目前大多采用人工检测方法.将一种轻量级的深层神经网络MobileNet与SSD算法结合,使用Inception网络附加到多个特征映射上,构建SSD-MobileNet算法模型用于人造板的缺陷检测,以提高区分不同缺陷的能力.从人造板工厂生产现场获取主要包括粗刨花、水印、砂痕、杂物、胶斑5种缺陷类型的表面缺陷图,制成一个包含3216张人造板表面缺陷图像的数据集.利用该数据集对SSD-MoblieNet模型进行训练、测试,并与其他特征提取网络(ResNet18、VoVNet39、ESPNetV2)的检测精度和检测速度的影响结果进行对比,发现其检测速度最快达到75帧/s,相对其他特征提取网络的平均精度均值提升2.26%~3.52%.该研究为实现人造板表面实时在线检测提供良好的技术支撑.

人造板、表面缺陷、SSD-MobileNet、卷积神经网络、深度学习、检测

58

TS653(木材加工工业、家具制造工业)

基于机器视觉的人造板非平面缺陷检测;广东省普通高校青年创新人才类项目;中山市社会公益科技研究项目;国家自然科学基金

2021-03-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

21-26

相关文献
评论
暂无封面信息
查看本期封面目录

林产工业

1001-5299

11-1874/S

58

2021,58(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn