一类不确定系统的自适应滑模迭代学习控制
本文针对一类在有限时间内执行重复任务的不确定非线性系统状态跟踪问题,提出一种自适应滑模迭代学习控制方法,在存在初始偏移的情况下也能实现对参考轨迹的完全收敛.本文通过设计全饱和自适应迭代学习更新律,估计参数和非参数不确定性以及未知期望控制输入,并将估计值限制在指定界内,避免估计值的正向累加.文章设计的自适应滑模迭代学习控制方法对系统模型的信息需求少,在对系统非参数不确定性的上界估计时不需要Lipschitz界函数已知.本文给出严格的理论分析,证明闭环系统所有信号的一致有界性以及跟踪误差的一致收敛性,并通过仿真验证所提控制方法的有效性.
迭代学习控制、非参数不确定性、自适应控制、类Lyapunov方法
40
TP273;O231;TP13
2023-09-04(万方平台首次上网日期,不代表论文的发表时间)
共10页
1162-1171