非零和微分博弈系统的事件触发最优跟踪控制
近年来,对于具有未知动态的非零和微分博弈系统的跟踪问题,已经得到了讨论,然而这些方法是时间触发的,在传输带宽和计算资源有限的环境下并不适用.针对具有未知动态的连续时间非线性非零和微分博弈系统,本文提出了一种基于积分强化学习的事件触发自适应动态规划方法.该策略受梯度下降法和经验重放技术的启发,利用历史和当前数据更新神经网络权值.该方法提高了神经网络权值的收敛速度,消除了一般文献设计中常用的初始容许控制假设.同时,该算法提出了一种易于在线检查的持续激励条件(通常称为PE),避免了传统的不容易检查的持续激励条件.基于李亚普诺夫理论,证明了跟踪误差和评价神经网络估计误差的一致最终有界性.最后,通过一个数值仿真实例验证了该方法的可行性.
非零和博弈、积分强化学习、最优跟踪控制、神经网络、事件触发
40
TP273;TP13;O232
2023-04-23(万方平台首次上网日期,不代表论文的发表时间)
共11页
220-230