期刊专题

10.7641/CTA.2022.11292

非零和微分博弈系统的事件触发最优跟踪控制

引用
近年来,对于具有未知动态的非零和微分博弈系统的跟踪问题,已经得到了讨论,然而这些方法是时间触发的,在传输带宽和计算资源有限的环境下并不适用.针对具有未知动态的连续时间非线性非零和微分博弈系统,本文提出了一种基于积分强化学习的事件触发自适应动态规划方法.该策略受梯度下降法和经验重放技术的启发,利用历史和当前数据更新神经网络权值.该方法提高了神经网络权值的收敛速度,消除了一般文献设计中常用的初始容许控制假设.同时,该算法提出了一种易于在线检查的持续激励条件(通常称为PE),避免了传统的不容易检查的持续激励条件.基于李亚普诺夫理论,证明了跟踪误差和评价神经网络估计误差的一致最终有界性.最后,通过一个数值仿真实例验证了该方法的可行性.

非零和博弈、积分强化学习、最优跟踪控制、神经网络、事件触发

40

TP273;TP13;O232

2023-04-23(万方平台首次上网日期,不代表论文的发表时间)

共11页

220-230

暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

40

2023,40(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn