衔接注意力机制与残差ASPP的W-Net工业烟尘图像分割
工业烟尘图像分割是基于烟尘图像监测污染等级判定的重要环节.针对工业烟尘分割时存在的小目标烟尘漏检、大目标烟尘误检以及分割结果精度低等问题,提出了一种结合衔接注意力机制和残差空洞空间金字塔池化(ASPP)的W-Net网络.使用衔接注意力机制将两个U-Net网络组合成W-Net,W-Net能充分利用烟尘的轮廓、位置信息进行烟尘粗分割和细分割操作,两次分割能达到更精细的分割效果;此外,针对W-Net中的普通卷积功能过于简单而不能更好地提取烟尘特征的问题,提出一种兼具残差块和ASPP功能的残差ASPP结构,同时还能根据大小目标烟尘的特点进行针对性分割,分割结果更全面完整.实验结果表明,结合衔接注意力机制与残差ASPP的W-Net以较小的分割效率损失为代价获得了较高的分割精度,Recall,IoU与F-score指标提高了4%~5%,解决了大小目标烟尘存在的分割问题,烟尘的分割效果也优于其他语义分割网络.
工业烟尘、图像分割、注意力机制、空洞空间金字塔池化、W-Net
40
TP391;TP18;TN911.73
国家自然科学基金;云南省科技厅应用基础研究项目
2023-04-12(万方平台首次上网日期,不代表论文的发表时间)
共12页
160-171