期刊专题

10.7641/CTA.2020.00460

基于多目标优化多任务学习的端到端车牌识别方法

引用
本文针对多个车牌识别任务之间存在竞争和冲突,导致难以同时提高多个车牌的识别率的问题,提出基于多目标优化多任务学习的端到端车牌识别方法.首先,通过分析某些车牌识别任务容易占主导地位,而其他任务无法得到充分优化的问题,建立基于多任务学习的车牌识别模型.接着,针对字符分割造成车牌识别准确率较低、鲁棒性较差的问题,提出基于多任务学习的端到端车牌识别方法.最后,针对多个车牌识别任务间难以权衡的问题,提出一种基于多目标优化的多任务学习方法,以提高多个车牌识别的准确率.将本文所提方法在标准车牌数据集上进行测试,实验结果验证了该方法的有效性和优越性,其他代表性方法相比可以提高车牌识别的准确率、快速性和鲁棒性.

车牌识别;多任务学习;多目标优化;深度神经网络;机器学习

38

国家自然科学基金国际地区合作与交流重点项目;国家自然科学基金面上项目;湖南省科技基金项目

2021-09-07(万方平台首次上网日期,不代表论文的发表时间)

共13页

676-688

暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

38

2021,38(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn