基于高斯混合聚类的切换系统的辨识
针对具有未知切换规则与未知子系统数量的切换系统的辨识问题,提出一种两阶段辨识方法,包括模式检测与参数辨识.在模式检测阶段,首先建立高斯混合模型表示采样数据的分布,并通过轮盘法选择合适的初始模型参数.其次,计算采样数据属于每个子系统的后验概率,通过极大似然估计算法迭代更新模型参数,使高斯混合模型最大化地拟合采样数据的分布.在此基础上,通过贝叶斯信息准则确定子系统的数量,并根据最大后验概率准则估计切换规则.在参数辨识阶段,通过递推增广最小二乘法估计每个子系统的参数向量.最后,通过仿真结果验证了所提方法的有效性.
切换系统;模式检测;高斯混合聚类;递推增广最小二乘法;贝叶斯信息准则
38
国家自然科学基金项目61863034
2021-09-07(万方平台首次上网日期,不代表论文的发表时间)
共7页
634-640